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About endurance limit of ductile inhomogeneous 
materials 

B. KUBICKI 
Central Queensland University, Rockhampton, Australia 

The theory describing the fatigue mechanism in elasto-plastic material containing pores or 
inclusions has been developed. An attempt at quantitative determination of the effect of 
endurance limit reduction by analysis of sizes of plastic zones formed near the inclusions, 
and their cracking has been done. The geometrical configuration, consisting of a round 
inclusion from which a nucleating crack emerged, was considered, and the stress intensity 
factor of such configuration was analysed. Based on a threshold value of AKbelow which 
crack propagation ceases, the critical value of loading stress was determined. Theoretical 
results were compared with results from experiments, showing quite good agreement. 

1. Introduction 
Rational design using porous or composite materials 
requires evaluation of strength of such inhomogenous 
media in the conditions of complex loading. 

The reaction for cyclic load is specially interesting 
because fatigue usually occurs at lower stress levels 
than for other forms of destruction, and the majority 
(about 80%) of practically observed fractures have 
a fatigue character. The strength criteria of inhomo- 
genous materials essentially are created either from 
empirical theories based on stress tensor component 
functions or by building failure process models and 
analysing them using microfracture apparatus. 

One such model is presented in this paper and both 
the above methods were used first by assuming, that 
satisfying the plasticity condition in local areas in the 
vicinity of pores in the presence of cyclic loading will 
lead to almost instantaneous cracking of these areas, 
and secondly by analysis of the stability of the struc- 
ture containing cracks, of the length of the previously 
existing plastic zones. 

Because the fatigue fracture process usually starts 
from the surface of the element when plastic deforma- 
tions are facilitated, the problem is restricted to the 
surface layer and consequently to plane stress condi- 
tions. The assumption is also made that inclusions 
are rare enough so that no interaction between them 
exists. 

2. Model formation 
2.1. Plastic regions development 
Let us assume that an element of the matrix material 
plate containing a separated circular pore of diameter 
D is loaded by stress S acting far from the hole and 
that the yield stress of the matrix material is Y (see 
Fig. 1). If S x aK > Y, where ~K is the stress concen- 
tration coefficient of the inclusion, the plastic zone 
starts to be formed near the pore. The plastic zone 
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formation in the vicinity of inclusions can be observed 
on the micro- and macroscales. 

At microscale levels, a map of dislocation genera- 
tions in the matrix material around the cylindrical 
pores [1] or semicircular dislocation segments in the 
matrix of the composite close to the interphase bound- 
aries with circular enforcement inclusions 1-2], can be 
seen. The quantitative analysis, of the plastic zones 
ranged around circular holes was performed numer- 
ically [-3, 4], theoretically [-5] and experimentally [-61. 

The author of this paper also used an approximate 
solution to analyse a thick ring with a small plastic 
inclusion. The results are shown in Fig. 1 where the 
plastic zone range A in relation to the hole diameter D, 
as a function of applied stress S in relation to yield 
stress Y of the matrix material, is presented. (The 
hardening coefficient of the mater ia l / - /~  0.) 

All results indicate a relativity good identity. Unfor- 
tunately the theoretical expressions of the solution are 
complicated and further application is difficult. 

To continue analysis, a formula was proposed 
which approximated very closely the theoretical, numer- 
ical and experimental results in the region of interest. 

D 

where ~, 13, 7 are coefficients, with 0~ = 2.58; 13 = 0.333; 
and 7 = 1.43. This leads to the relation 

S 
Y = {expI!n(A/D~.~-31n2"581+ 0.333} 

in the region of 0 < AID < 0.55 for plastic zone range. 

2.2. Fatigue of plastic regions 
It is obvious that accumulation of plastic strain energy 
in a limited volume of material will lead to crack 
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Figure 1 Range of plastic zones (approximate function). 
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formation. In addition, a plastically deformed region 
usua lly experiences cyclic strain hardening which 
facilitates crack propagation. According to Manson's 
law the fatigue life Nf can be expressed by the plastic 
strain component A~p as 

\ ~ f  / 

where ~f and ~j are coefficients. For example, Man- 
son's point P3 has a coordinate 

where RA is the reduction of sample area. In practice, 
less than 11% of the plastic deformation corresponds 
to only 10 cycles. In comparison with numbers of 
cycles usually considered in fatigue problems the frac- 
ture occurs almost instantaneously. Thus by cyclic 
loading the plastic zones will crack very quickly form- 
ing the geometrical configuration presented in Fig. 2a. 

2.3. Kcoefficient determination 
The stress intensity factor which describes the inten- 
sity of all stress components in the crack tip vicinity 
for the case under consideration was determined by 
Bowie [7] in his fundamental work. The problem was 
solved using Mushelisvili's methods and the stress 
function was assumed to have the form of a poly- 
nomial. 

2 4 7 6  

The results are presented by Bowie in numerical 
and graphical form (Fig. 2) where 

K = S(rcA)~ 

To enable further analysis, Bowie's results were ex- 
pressed by the function 

f = 6 + 0  

where fi, p, 0 are coefficients (6 = -2.53; 9 = 0.385; 
0 = 3.36). 

The above formula expressed the original function 
with acceptable exactness in the region of interest 

A 
0 < ~ < 0.55 

Now the stress intensity factor can be expressed as 

K = S [ r t ( A ) D l ~ 1 7 6  + 3.361 

or = 2 58 S _ 
m 4 

K SireD. ( 0.333)143105 

x { - 2 . 5 3 1 2 . 5 8 (  S -  0B33)~431~ + 0.336} 
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Figure 2 Stress intensity coefficient (approximate function). 

2 . 4 .  C r a c k  s t a b i l i t y  c o n d i t i o n  
The length of cracks in this problem are relatively 
small. However, according to the Kitagawa-Takahashi 
concept [-8], Fig. 3, they can be treated according to 
linear elastic fracture mechanics rules. The stress in the 
considered problem is kept below the limit of 2/3 yield 
stress of the matrix material and the influence of the 
plastic zones in the crack tip is small. 

It is well known that if oscillation of AK of stress 
intensity factor K does not exceed the threshold value 
specific for any material marked as K T f t  the crack 
propagation will not occur. 

Determination of K T I t  is described by standards 
and is based on the general principles of fracture 
mechanics. Thus, the crack stability condition can be 
formulated as: 

When this condition is satisfied the crack will not 
propagate by loading stress equal to S and this level of 
stress will be noticed as the endurance limit. 

The formula gives the possibility to control the 
influence of: 

(a) yield stress of the matrix material, 
(b) diameter of the pore, and 
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Figure 3 The Kitagawa-Takahashi curve. 

(c) threshold value K T H  on the endurance limit of the 
porous material. 

3. Intercrystalline cracking, correction 
for development  of fracture surface 
and correction for deviation of 
cracking direction 

According to our observations fatigue cracking, 
at least in the starting region, develops in an inter- 
crystalline manner. Grain boundaries are especially 
weakened regions. Usually impurities are situated 
here, especially oxides and sulphides and therefore 
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Figure 4 Cracked surface profile. 

frequently chains of micropores are formed. The 
fracture surface corresponds to grain boundaries and 
the crack propagates in a zigwefdfvzag form in both 
directions parallel and perpendicular to its front. An 
example of a cracked surface profile is presented in 
Fig. 4. 

The above developed formula  should contain the 
real value of K T H  corresponding with the real zigzag 
form of the crack in the microscale. Determination 
of K T H  described by standards corddresponds with 
macroscale conditions and is based on the general 
principles of fracture mechanics. 

The assumption is made that the crack is flat and is 
always perpendicular to the stress digdgflflrection. So 
in the macroscale test the "condensated" value of 
K T H  is measured with parallel X and perpendicular 

coefficients. 
The microscale threshold value K T H M  is given by 

K T J  
K T H M  = 

XN 

The stress intensity factor obtained from macroscopic 
examinations on standard specimen is calculated from 
formula 

K - B W l l  2 \ W / i  

where AP is the change of loading, W is the height of 
the specimen, B is the width of the specimen, a n d a  is 
the crack length. 

It is assumed that the width of the cracking front 
is equal to the width of the specimen B. In fact, the 
length of the crack front is greater by parallel surface 
development coefficient X. 

The perpendicular ~ factor can be determined on 
the basis of K coefficient for the zigzag form of the 
crack. 

The surface development coefficient ~s = 1.45 indi- 
cates that the main inclination of the zigzag develop- 
ment surface is about 45 ~ . The stress intensity for such 
a zigzag crack was determined by Isida [9] who 
discovered also that the coefficient in the stress inten- 
sity factor formula for K~ and K~I are almost indepen- 
dent of the zigzag crack length. 

Calculation of equivalent K I Z  for zigzag gives: 

K I Z  = (K~ + K2) ~ = 0.782S(rcNa) ~ 

where Na = real length of the zigzag. Na cos 45 ~ = L 
where L = length of the flat crack in the macroscale 
model. Thus K I Z  = 0.930 = S(reL) ~  

2 4 7 8  

Comparison with the flat crack used in the macro- 
scale test when K = 1.128(zcL) ~ gives the perpen- 
dicular development coefficient ~ = 0.83. 

Thus K T H M  = K T H  0.69 x 0.83 = 0 .572KTH.  

4. Experiments and discussion of the 
results 

The above developed theory was applied to powder 
metallurgy materials based on iron powder (H6gan~is 
powder NC-100-24). 

The maximum pore size which was observed was 
0.4 mm in diameter (Fig. 5) so the pores of size 0.2, 0.3, 
0.4, 0.5, 0.6, 0.7 (mm) were analysed. 

The K T I I  value determined in the macroscale 
test was K T H ~ 2 0 0  ( N m m  -3/2) and this gives 
K T H M  = 115 (N mm-a/z)  for the microscale. 

Substituting the above data into the crack stability 
formulae we can present the family of lines describing 

Figure 5 Example of a Iarge pore. 
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Figure 6 Comparison of theoreticaI and experimental results. 
D = hole diameter and O refers to end of model application. 



the relation between crack stability stress S and yield 
stress of matrix Y for different inclusion diameters D. 
It reveals an almost linear relation between S and Y, 
see Fig. 6. 

Such a linear relation is very well known to practi- 
cing engineers working with powder metallurgy ma- 
terials. The diagrqdxczcam presents the experimental 
results for 26 different sintered materials based on an 
iron powder background of theoretical lines giving 
reflectable agreement. It reveals also an unexpected 
small influence of the pvsw2ore size D on the stress 
S by the constant matrix yield stress Y. The reduction 
of D from 0.7 (mm) to 0.3 (ram) results in the increase 
of S by 20 (N mm -2) only. A significant effect is 
noticed for small pores. Taahis phenomena is also 
observed in practical powder metallurgy. 

5. Conclusions 
1. The fatigue limit should be positively influenced 

by the increase in the value of the yield point of the 
matrix material, resulting in diminution of the range 
of plastic zones. The optimum solution would be to 
press plastic materials and only then strengthen it, 
e.g. by means of a thermochemical treatment. 

2. Any action aimed at the reduction of the max- 
imum pore size should be advantageous. The effect 
however is not linear and the reduction in size of the 
very big pores is less significant than that for small 
pores. 

3. The influence of all treatments resulting in an 
increase of K T H M  i.e. increase of crack resistance of 
links between structure elements on the microscale 
level, should be positive. 

4. It seems that the theory presented also can be 
applied to composite materials in the case when the 
destruction originates with an inclusion separation 
process. 

Glossary of symbols 
a crack length (mm) 
A plastic zone range (mm) 
B width of specimen (ram) 
D pore diameter (ram) 
H materials hardening coefficient 
K stress intensity coefficient (N mm -3/2) 

K b  KII stress intensity coefficient for first and second 
mode of fracture 
K IZ  equivalent KI coefficient for zigzag crack. 
(N mm -3/2) 
K T H  threshold value of K (N mm-3/2) 
K T H M  K T H  in microscale (N mm -3/2) 
L length of flat crack (ram) 
Na real length of zigzag (ram) 
Nf fatigue life in cycles 
AP loading force variation (N) 
RA reduction of area of sample 
S loading stress (MPa) 
W height of specimen (ram) 
Y yield stress of matrix material (MPa) 
~, [3, ~, coefficients in AID = f ( S / Y )  formula 
~K stress concentration coefficient 
6, 9, 0 coefficients in K =f(S,  A/D) formula 
el, oh coefficients 
Aep plastic strain components 
X, N parallel and perpendicular to crack front surface 
development correction coefficients 

surface development coefficient 
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